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Abstract In this paper the harmony search (HS) algorithm
and Lyapunov theory are hybridized together to design a sta-
ble adaptive fuzzy tracking control strategy for vision-based
navigation of autonomous mobile robots. The proposed vari-
ant of HS algorithm, with complete dynamic harmony mem-
ory (named here as DyHS algorithm), is utilized to design
two self-adaptive fuzzy controllers, for x-direction and
y-direction movements of a mobile robot. These fuzzy con-
trollers are optimized, both in their structures and free para-
meters, such that they can guarantee desired stability and
simultaneously they can provide satisfactory tracking per-
formance for the vision-based navigation of mobile robots.
In addition, the concurrent and preferential combinations
of global-search capability, utilizing DyHS algorithm, and
Lyapunov theory-based local search method, are employed
simultaneously to provide a high degree of automation in the
controller design process. The proposed schemes have been
implemented in both simulation and real-life experiments.
The results demonstrate the usefulness of the proposed design
strategy and shows overall comparable performances, when
compared with two other competing stochastic optimization
algorithms, namely, genetic algorithm and particle swarm
optimization.
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1 Introduction

Autonomous mobile robot navigation has been regarded as
a popular research area for the last few decades. Some ear-
lier attempts to solve the problem of path planning were pre-
sented in [1,2]. Various classical theoretical approaches such
as Dijkstra’s algorithm [3] and A* algorithm [4], designed
originally for some other purposes, have also been suitably
extended to solve navigation problems. The potential field
method [5,6] and probabilistic roadmap methods [7], have
been extensively utilized by many researchers for navigation
in static environments only. On the contrary, for the mov-
ing obstacle environments, other potential solutions based
on dynamic potential field method [8,9], and sensor-based
path planning methods [10–12] have been extensively used.
A robot typically calculates and estimates the motion of
the moving obstacles based on sensory data form infra red
(IR), sonar sensors, laser range finder, optical sensor and
RFID [12,13]. The chief problem associated with most of
the sensor-based techniques is that the data fusion algorithm,
used to synchronize the sensory data, cannot process the data
at the same time stamp due to the out-of-sequence measure-
ments (OOSM) problem. In order to make precise navigation,
this OOSM problem should be solved and thus, vision has
become a popular alternative as a sensing mechanism [14].
In some vision-based approaches, the navigation system is
used to construct a high-level topological representation of
the world and the robot learns to recognize rooms or spaces
and to navigate between them by building models of those
spaces and their connections [14,15]. Many robot navigation
systems also focus on producing a detailed metric map of the
world using expensive hardware, such as a laser scanner, tele-
focus camera, etc. After this map is built, the robot then has to
solve a complicated path planning algorithm [16,46]. These
methods pose significant, additional computational burden
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to the processing unit and create difficulties during real-life
applications.

The present paper uses a novel idea of formulating a
mobile robot navigation problem as a tracking control prob-
lem, where vision is used as the sensing element for naviga-
tion [17]. The problem has been solved using hybrid stable
adaptive fuzzy controllers. Fuzzy systems and fuzzy con-
trol philosophies have been successfully employed in many
problems in the area of robotics [18–22] and other interest-
ing engineering applications [23–26]. In this present scheme,
single camera-based vision is used to generate the reference
path and adaptive state feedback fuzzy controllers are uti-
lized to track that path. A simple path planning algorithm is
devised to create the reference path for the mobile robot nav-
igation purpose. The planned path is then utilized to create
the reference signals for x-direction and y-direction move-
ments and two previously tuned adaptive fuzzy controllers
are implemented, for x-direction and y-direction movement
of the mobile robot. For the actual navigation of the mobile
robot following the planned path, the controllers have to gen-
erate suitable control signals to produce the requisite drive
signals for left and right wheel actuators of the robot. The
major contribution of this work is that each tracking con-
troller is separately tuned with some arbitrary reference sig-
nal, generated from a similar environment to that in which
the robot will actually navigate, and, once the tuning part is
successfully concluded, these controllers are readily applied
to the real-life applications. The system is so designed that
once the reference path is generated, the robot is commanded
to track a specified fraction of this reference path. Then a new
image of the environment is acquired and the whole process
of new path planning, control actuation generation and robot
navigation for a specified fraction of the reference path is
repeated again and again. This is done with the objective of
equipping the system with the flexibility of handling dynam-
ically varying environments, so that the robot navigation can
still be carried out with dynamic variations in positions of
obstacles during its navigation.

In the present paper, a hybridization of locally operative
Lyapunov theory and a globally adaptive harmony search
algorithm-based stochastic approach [27,28] has been uti-
lized to design the hybrid stable adaptive state feedback fuzzy
controllers for autonomous mobile robot navigation, utiliz-
ing the concept of tracking control. The relationship between
music and mathematics dates back to ancient civilization.
In 2001, Z. W. Geem developed an optimization method,
namely harmony search, for function optimization and engi-
neering applications, inspired by the musical phenomena
of harmony improvisations. It is a meta-heuristic algorithm
based on music [29]. Many more meta-heuristics are found in
literature, most of them mimicking some natural or artificial
phenomena. The most commonly used class of algorithms is
that of genetic algorithms (GAs), which are based on natural

selection and mechanism of population genetics [30]. Other
such computational algorithms, similar to GA, include evo-
lutionary strategies, genetic programming, particle swarm
optimization, ant colony optimization, simulated annealing
and tabu search [31,32]. In contrast to the other metaheuris-
tic search techniques, HS algorithm is based on the musi-
cal process of searching for perfect state of harmony, uti-
lizing the esthetic and acoustic criteria, which impose fewer
mathematical requirements [29,33] and can be easily adopted
for various types of engineering optimization problems. In
recent years, HS method has been successfully applied in sev-
eral fields including function optimization [34,35] mechani-
cal structure design [34,36], and pipe network optimization
[37]. Some exciting applications of HS algorithm, specif-
ically in the domain of robotics, have also been recently
reported in [38], where Tangpattanakul et al. proposed a
method for optimal trajectory planning of robot manipula-
tors with six degrees of freedom. In their work, Tangpat-
tanakul et al. proposed a hybrid methodology, combining
the HS and the sequential quadratic programming (SQP), to
develop a globally optimal trajectory for a manipulator move-
ment. The works of Fourie et al. are also included in [38],
where a visual tracking system has been developed employ-
ing a proposed formulation of the HS algorithm-based har-
mony filter. The method has been successfully applied to
accurately track a poorly modeled target under challenging
environments.

The Lyapunov theory and harmony search algorithm have
been hybridized to create a superior method by combining
the strong points of both the methods. In our proposed hybrid
methodologies, the Lyapunov theory-based adaptation and
HS algorithm-based stochastic global search are operated
concurrently or preferentially, to optimize both the structure
and the free parameters of the fuzzy logic controllers (FLCs)
over the solution space, with the objective of controlling the
plant. Vision-based path planning and the design of track-
ing controllers for controlling the x-direction and y-direction
movements are performed with the objective of autonomous
mobile robot navigation without using any IR or other prox-
imity sensors. In this design methodology, the number of
membership functions (MFs) for each input variable, the sup-
ports of input MFs, the number of rules, the values of the scal-
ing gains and the positions of output singletons are optimized
to evaluate a candidate controller setting for optimal perfor-
mance, in terms of the integral absolute error (IAE) value
between the path planned using vision sensor and the actual
path traversed by the mobile robot. The obtained results illus-
trate, on the whole, the superiority of the preferential hybrid
approach over the other approaches. The results obtained
in both simulation and experimental environments are com-
pared with similar strategies developed using GA- and PSO-
based fuzzy logic tracking controllers for vision-based robot
navigation [17].
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The rest of the paper is organized as follows: Sect. 2
details the design of stable adaptive fuzzy controllers. Sec-
tion 3 describes the HS algorithm-based tracking controller
design technique as well as the hybrid controller design
strategies. Section 4 discusses in detail the implementation of
the proposed stable adaptive fuzzy tracking controller-based
mobile robot navigation scheme in an indigenously devel-
oped mobile robot platform and also the comparative study
among different design strategies. Section 5 concludes the
paper.

2 Design of stable adaptive fuzzy tracking controller

Let us consider the motion of the mobile robot in a plane
which can be described as [39]:
⎡
⎢⎢⎣

ẋ

ẏ

ϕ̇

⎤
⎥⎥⎦ = ṗ =

⎡
⎢⎢⎣

cosϕ 0

sin ϕ 0

0 1

⎤
⎥⎥⎦m (1)

M(p)ṁ + V (p, ṗ)m + G(p) = τ (2)

where p = [
x y ϕ

]T
is the present pose of the robot in

the world Cartesian coordinate system, the coordinate (x, y)
denotes the centre of mass of the robot, the heading direction

ϕ is taken counterclockwise from the x-axis, m = [
v ω

]T
is

the vector containing linear velocity v and angular velocity
ω, τ ∈ �n×1, is the input vector, M(p) ∈ �n×n is a sym-
metric and positive definite inertia matrix, V (p, ṗ) ∈ �n×n

is the centripetal and Coriolis matrix, and G(p) ∈ �n×1 is
the gravitational vector.

In this present work, our control objective is that for a given
reference trajectory p

r
(t) and orientation of mobile robot,

we must design two controllers that can generate suitable
torque τ such that the current robot position p

c
(t) achieves

the desired reference position p
r
(t):

Lt
t→∞(pr

(t)− p
c
(t)) = 0 (3)

To achieve the control objective, the system should be so
designed that a τ(t) is derived based on the differentially
steered drive velocities to the left and right wheels of the
robot according to the steering system in (1). This objec-
tive is satisfied by designing two stable adaptive fuzzy logic
controllers, for x-direction and y-direction movements, that
can ensure asymptotic stability, achieve satisfactory transient
performance and can suitably configure this mobile robot
navigation problem as a tracking control problem, where the
controllers guide the robot to track or navigate a desired track-
ing or navigation path.

Now to design such x-direction and y-direction tracking
controllers, let us consider that our objective is to design an

adaptive strategy for an nth order SISO plant in general, and
is given as [27,40–42]:
{

q(n) = f (q)+ bu
r = q

(4)

Here, the state vector is given as q = (q1, q2, . . . , qn)
T =

(q, q̇, . . . , q(n−1))T ∈ Rn where q(n) denotes the nth deriv-
ative of state q, q1 is the first state where q1 = q, both plant
input and plant output are scalar quantities, given as u ∈ R
and r ∈ R, respectively, and f (·) is an unknown continuous
function. The control objective is to force the plant output
r(t) to follow a given bounded reference signal rm(t) under
the constraints that all closed-loop variables involved must be
bounded to guarantee the closed loop stability of the system.
Thus, the tracking error is e = rm −r . Let the parameter vec-
tor of the output singletons of the fuzzy controller be denoted
as θ . Hence our control objective is to find the structure of
the fuzzy controller as well as a feedback control strategy
u = u(q|θ), using fuzzy logic system and an adaptive law
for adjusting θ such that the following conditions are satis-
fied:

(i) The closed loop system must be globally stable in the
sense that all variables, q(t), θ(t) and u(q|θ) must be
uniformly bounded, and

(ii) The tracking error e(t) should be as small as possible
under the constraints in i) and the e − θ space should be
stable in the large for the system [40,41].

To accomplish these control objectives with a direct adaptive
fuzzy controller, let the error vector be e=(e, ė, . . . , e(n−1))T

and k = (k1, k2, . . . , kn)
T ∈ Rn be such that all the roots of

the Hurwitz polynomial sn + knsn−1 + · · · + k2s + k1 are in
the open left half of s-plane [40–42]. Now the ideal control
law for the system in (4) is given as [40,43]:

u∗ = 1

b

[
− f (q)+ r (n)m + kTe

]
(5)

where r (n)m is the nth derivative of the output of the reference
model.

This definition implies that u∗ guarantees perfect track-
ing, i.e. r(t) ≡ rm(t) if Limt→∞ e(t) = 0 [41,42]. Here the
vector k describes the desired closed-loop dynamics for the
error. In practical situations, since f and b are not known
precisely, the ideal u∗ of (5) cannot be implemented in prac-
tice. Thus a suitable solution can be to design a fuzzy logic
system to approximate this optimal control.

Now, to ensure stability, we assume that the control u(t)
is given by the summation of a fuzzy control, uc(q|θ), and
an additional supervisory control strategy, us(q), given as:

u(t) = uc(q|θ)+ us(q) (6)
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Let us assume that the adaptive fuzzy logic controller (AFLC)
is constructed using a zero order Takagi–Sugeno (TS) fuzzy
system. Then uc(q|θ) for the AFLC is given in the form
[27,40,42]

uc(q|θ) =
∑N

l=1 θl ∗ αl(q)∑N
l=1 αl(q)

= θT ∗ ξ(q) (7)

where θ = [θ1 θ2 . . . θN ]T is the vector of the output single-
tons, αl(q) is the firing degree of rule ‘l’ =

∏r
i=1 μ

l
i (qi ), N is

the total number of rules, μl
i (qi ) is the membership value of

the i th input membership function (MF) in the activated lth
rule, ξ(q) is the vector containing normalized firing strength

of all fuzzy IF-THEN rules = (ξ1(q), ξ2(q), . . . , ξN (q))T and

ξl(q) = αl (q)∑N
l=1 αl (q)

.

Let us define a quadratic form of tracking error as Ve =
1
2 eT Pe where P is a symmetric positive definite matrix satis-
fying the Lyapunov equation. The supervisory control action,
us(q), should be so designed that V̇e should be negative semi-

definite, i.e. V̇e ≤ 0. Here us(q) is constructed as given in
[40,43] and can be presented as

us(q)= I ∗
1 sgn

(
eT Pbc

) [
|uc|+ 1

bL

(
f U +

∣∣∣r (n)m

∣∣∣+|kTe|
)]

(8)

where

{
I ∗
1 = 1 if Ve > V

I ∗
1 = 0 if Ve ≤ V

, V is a constant specified by the

designer, f U ≥ | f (q)| and 0 < bL < b. With this us(q) it

can be shown that V̇e ≤ − 1
2 eT Qe ≤ 0, where Q is a positive

definite matrix. Thus, as P > 0, boundedness of Ve implies
the boundedness in q . Hence, the closed loop stability is
guaranteed.

The zero order TS-type fuzzy control uc(q|θ) can be so
constructed that it will produce a linear weighted combina-
tion of adapted parameter vector θ . Thus a simple singleton-
based adaptation law as proposed in [40–43], can be given
as

θ̇ = νeT p
n
ξ(q) (9)

where ν > 0 is the adaptation gain or learning rate and p
n

is
the last column of P .

3 Design of harmony search algorithm-based AFLC

The HS algorithm is inspired by musicians’ behavior where
a combination of pitches determine the quality of harmony
generated, here a set of values of the decision variables is
judged by the corresponding value of the objective function.
As in musical harmony, if a combination of decision variables
can produce good result, then this solution vector is stored in

memory and this helps to produce an improved solution in
near future.

3.1 Harmony search-based approach (HSBA) [29,33]

In Lyapunov theory-based design of stable AFLC’s [40], only
the output singletons of the fuzzy controllers were adapted
and the other free parameters e.g. supports of the input MFs,
input and output scaling gains and also the structural para-
meters of the controllers, i.e. the number of MFs in which
each input is fuzzified, the number of rules, etc. were cho-
sen a priori. Furthermore, the AFLC was implemented for a
fixed controller structure. However, while designing the HS
algorithm-based optimal controller, all these parameters are
obtained automatically by encoding them as part of the solu-
tion vector, i.e. each of these parameters forms a decision
variable. This helps to determine the optimal structure of the
FLC as well as its complete settings.

In HS algorithm-based design, a harmony in solution
space is formed as [27,28]:

Z = [structural flags for MFs | center locations of the MFs |
. . . |scaling gains|positions of the output singletons]

(10)

The structural flags are implemented to determine whether
a particular MF will be present for an input to the FLC or
not. It can only take binary values where 0 indicates the non-
existence and 1 indicates the existence of the corresponding
MF. However, HS is an algorithm where each entry in the
harmony vector can take continuous values. Hence, for each
structural flag in the vector, the universe of discourse is set
as [0, 1] and the flag is set to 0 if the continuous value of
the variable is <0.5 and the flag is set to 1 if the variable is
≥ 0.5. The total number of 1s in the structural flags keeps
changing in each iteration and hence the total number of MFs
in which an input variable is fuzzified also changes in each
iteration. This changes the structure of the AFLC in each
iteration as it changes the total number of MFs for each input
variable, which changes the total number of rules of the fuzzy
rule base and hence changes the total number of active out-
put singletons. Each input is fuzzified in the range [−1, 1],
with two fixed triangular MFs having their peaks fixed at
−1 and 1 respectively and the centre locations of all other
triangular MFs are stored in the particle vector. All interme-
diate MFs for that input variable are flexible in nature. They
can be either active or inactive during an iteration and their
peaks are also adapted by HS algorithm in each iteration. For
each MF the peaks of the immediate adjacent active MFs on
either side of its own peak forms the left and right base sup-
port of it. Whether the immediate adjacent MF is an active
MF or not is determined by the content of its corresponding
structural flag. Hence, some of the centre locations of MFs
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are ignored while evaluating the AFLC output, because their
corresponding entries in the structural flags are zero. A sim-
ilar logic holds true for the output singletons in a harmony
vector. If a singleton has one or more antecedent MF that is
inactive, then it becomes inactive itself.

HSBA Algorithm
The outline of the HS [29] based controller design algo-

rithm employed in this paper is given as follows [27]

(i) The optimization problem can be stated as:

Minimizeg(Z)such thatzi ∈ Ẑi , i = 1, 2, . . . , d (11)

Z is a candidate solution vector, Z = [z1, z2, . . . , zd ]T ∈
Rd and Ẑi is the universe of discourse of zi and g(Z) =
integral absolute error (IAE) = ∑PST

n=0 e(n)	tc, where
PST is the plant simulation time and 	tc =
step size or sampling time.

(ii) Generate HMS number of randomly generated candi-
date solution vectors and store them in the HM matrix
(stored by the values of the objective function g(Z)):

H M =

⎡
⎢⎢⎢⎢⎢⎣

z1
1 z1

2 . . . z1
d

z2
1 z2

2 · · · z2
d

...
...

. . .
...

zHMS
1 zHMS

2 · · · zHMS
d

⎤
⎥⎥⎥⎥⎥⎦

(12)

(iii) Determine the structure of the candidate controller based
on structural flags as incorporated in the harmony Z .

(iv) Calculate the fitness value (e.g. integral absolute error
(IAE)) of the controller for each harmony that acts as
a candidate controller in this work, by using candi-
date controller simulation (CCS) algorithm as shown
in Algorithm 1.

(v) Improvise a new harmony vector Z ′ = (
z′

1, z′
2, . . . , z′

d

)
either by choosing a value for a decision variable from
the past history, stored in HM matrix, or by choosing
any value in its permissible universe of discourse, with
probability HMCR ∈ (0, 1) [33,34,44]. Hence a new
decision variable z′

j in Z ′ can be determined as:

z′
j ∈

{
z1

j , z2
j , . . . , zHMS

j

}
with probability H MC R

or
z′

j ∈ Ẑ j with probability (1 − H MC R)

⎫⎪⎬
⎪⎭
(13)

Each decision variable of the new vector Z ′, if generated
from HM matrix, is further examined for a potential
pitch-adjustment possibility with a probability PAR. In
pitch-adjustment, the decision variable adjusts its value
according to the formula:

z′
j = z′

j + bw × ud(−1,+1) (14)

where bw is an arbitrary distance bandwidth and ud is a
uniform distribution.

(vi) Evaluate the objective function g(Z ′) for this new har-
mony. If g(Z ′) = min

(
g(Z1), g(Z2), . . . , g(ZHMS)

)
,

then replace the solution vector in existing HM matrix
that produced the worst harmony, with this new har-
mony. Then rearrange the HM matrix by sorting all deci-
sion vectors according to their objective function values.

(vii) The termination criterion can be set in two ways, either
by choosing the maximum number of HS improvisa-
tion/iteration (itermax) or by using a minimum error cri-
teria, i.e. continue the HS improvisation until a max-
imum pre-specified allowable error is attained by the
controller.

Further, in 2007 Mahdavi et al. [34] suggested an improve-
ment to the original HS algorithm as presented in [29], where
the PAR and bw in step-v are varied throughout the gener-
ations as linearly increasing and logarithmically decreasing
manner respectively, but the HMCR parameter is kept con-
stant. In [34] the values of PAR and bw change dynamically
with the generation of harmony improvisation as:

PAR(g) = PARmin + (PARmax − PARmin)

itermax
× g (15)

where PARmin is minimum pitch adjusting rate, PARmax is
the maximum pitch adjusting rate, g is the present generation
number, and

bw(g) = bwmax exp(c · g),

c =
Ln
(

bwmin
bwmax

)

itermax
(16)

where bwmin is the minimum bandwidth, bwmax is the max-
imum bandwidth.

This modification showed successful results for several
constrained and unconstrained optimization problems.
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3.2 Newly proposed completely dynamic harmony memory
improvisation-based HSBA (DYHSBA) [27]

Another modification of the original HS algorithm has been
proposed in [27], where HMCR and PAR parameters are
varied simultaneously but the bw parameter is kept con-
stant throughout the generation of harmony improvisations to
obtain the optimal solution vector. In this proposed modifica-
tion of the harmony improvisation of the basic HS algorithm,
the parameters HMCR and PAR both are increased linearly
from HMCRmin to HMCRmax and PARmin to PARmax respec-
tively and bw is kept fixed as:
⎧⎪⎨
⎪⎩

HMCR(g) = HMCRmin + (HMCRmax−HMCRmin)
itermax

× g

PAR(g) = PARmin + (PARmax−PARmin)
itermax

× g
bw: fixed

(17)

The physical implication of this modification is that as the
generation of harmony improvisation increases the optimiza-
tion approach relies more on the harmony memory because
the harmony memory would be better one due to the impro-
visations throughout the generations. The PAR parameter is
also increased because the fine tuning is required as the opti-
mization algorithm relies more on the past values of the har-
monies stored in the memory. That signifies the modifications
of the HMCR and PAR parameter of the basic HS algorithm.

Along with this modification, another modification in the
improvisation stage is also proposed in [27]. In the original
HS algorithm during the harmony improvisation, only one
harmony is improvised in each iteration and consequently
updates the harmony memory if the newly improvised har-
mony performs better in terms of the objective function. Thus
only one harmony is replaced and remaining (HMS - 1) num-
ber of harmonies remain unaffected in each iteration. Instead
of using such a concept of harmony memory update, if the
entire harmony memory is improvised in each iteration then
it can be hoped that the convergence of the algorithm will
be better as the algorithm will then potentially explore more
solution space in each iteration. Therefore, in this modifi-
cation, the harmony memory is improvised HMS number
of times rather than single harmony improvisation in each
iteration. It is also reported in [27] that the proposed modifi-
cation with entire HM improvisation concept shows a supe-
rior result than the other HS variants. Therefore, from now
onwards this modification is implemented for the design of
different hybrid adaptation-based control strategies.

3.3 Design of hybrid stable AFLC by HSBA and Lyapunov
theory

In this design methodology, the Lyapunov theory-based
local adaptation of output singletons and the modified HS
algorithm-based global optimization technique (DyHSBA)

are combined to design stable adaptive fuzzy controllers. In
this paper this approach is referred as the hybrid adaptation
strategy-based approach (HASBA). Two different modes of
hybrid models such as concurrent and preferential, are pro-
posed and developed to design the stable adaptive fuzzy con-
trollers for vision-based mobile robot navigation purpose.
These two hybrid techniques are described in the following
sections.

3.3.1 Hybrid concurrent model (HASBA-Con)

In this design process, the Lyapunov theory-based adaptation
and the DyHSBA run concurrently to optimize the structure
of the controller, i.e. the number of MFs required to fuzzify
the input variables, center locations of the input MFs, posi-
tions of the output singletons etc. and the scaling gains of the
input and output variables.

In this method also, a solution vector Z is divided into two
sub-groups given as [27,42,43]:

Z = [ψ | θ ] (18)

where

ψ = [structural flags for MFs | center locations

of the MFs | scaling gains]
θ = [position of the output singletons]

⎫⎪⎬
⎪⎭

(19)

The decision variables comprising ψ have a non-linear
influence and the decision variables comprising θ have a
linear influence on the control signal uc [27,42]. For each
harmony chosen as a candidate controller, it is first subjected
to the Lyapunov theory-based adaptation of the θ portion of
the chosen harmony and the finally adapted values are then
used to update the candidate controller. Then this updated
harmony is subjected to a usual pass of the DyHSBA algo-
rithm. In this process θ is subjected to both local and global
search experiences in every improvisation of a harmony. This
process of concurrently employing the Lyapunov theory-
based adaptation and DyHSBA algorithm for each candidate
controller is continued in quest for the best solution.

3.3.2 Hybrid preferential model (HASBA-Pref)

In this proposed hybridization scheme, the DyHSBA method
and the HASBA-Con method are both used to achieve the
minimum possible tracking error. Here, each harmony in the
harmony memory, i.e. each candidate controller, evaluates
the CCS algorithm and also the Lyapunov theory-based adap-
tation separately. Then, the algorithm for which the better fit-
ness value is obtained is used as the guiding factor to explore
the solution space. If the Lyapunov theory-based adaptation
is better for that candidate solution vector in that iteration,
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then the process will follow the concurrent hybrid model, oth-
erwise, the process will follow the DyHSBA method in that
iteration. Hence each harmony in the HM matrix is subjected
to different guiding rules of improvisation and the preference,
or the choice of the guiding rule, is based on the evaluation
process just described before. This process of evaluation is
performed in each iteration afresh for each harmony and the
whole harmony memory is improvised to get an improved
convergence in the design process.

4 Vision-based mobile robot navigation using stable
AFLC’s

4.1 Mobile robot hardware description

A differentially steered drive robot, indigenously designed
and built in our laboratory, is used as our experimental plat-
form as shown in Fig. 1. The proposed algorithms are imple-
mented in Visual Basic on an Asus EEE PC Laptop, with
1GB solid-state HD, 1GB RAM, Windows XP operating
system, mounted on-board [45]. The Laptop communicates
with the robot base which comprises a PIC18F4550 proces-
sor, through USB link. The robot has one wheel on each front
side, connected with RC servo motors, and two rear wheels,
which are not motorized. The robot is equipped with encoder
feedback from the left and right wheel encoders which gen-
erates four pulses/rotation and uses hall-effect switches in
its operation. The Laptop camera with auto-focus facility
serves as the mono-vision sensor. The robot base is ener-
gized (5V, 1A) from the Laptop through two USB cables. No
separate power source is required for mobile robot operation
and all RC servos are power controlled for energy saving.
Six IR proximity sensors and an IR range sensor processor
PIC12F683 are also attached to the robot base although they
are not utilized in this work [45].

4.2 Image processing strategy and generation
of the reference path

During the process of navigation, the robot intermittently
stops, the camera acquires image of the environment in front
of the robot, image processing is performed on that image to
determine the reference path, the controllers determine the
suitable drive commands and the robot navigates for a desired
duration [17]. Then the robot stops again, acquires another
image and repeats the process. This process of navigating the
robot for a desired duration and then stopping it and activat-
ing the vision sensor is carried out in an iterative fashion,
until the robot completes the navigation job. Algorithm 2
describes the image processing steps employed in this work
which produces a binary image suitable for subsequent ref-
erence path planning [17]. Several path planning techniques

have been reported over the last two decades [1–3,5–10,13–
15,18,19,21–24,46,47]. In this work a simple but accurate
path planning algorithm as proposed in [17] is utilized, where
the path is planned in image plane and that path is subse-
quently project to real-world Cartesian coordinate system.
A more detailed description of the algorithm for generation
of the reference path is available in [17]. The algorithm is so
developed that it is capable of coping with a dynamic envi-
ronment. The acquisition of image and development of the
reference path for an environment is not performed at a single
time. This is because the environment may change after the
robot starts navigation based on the generation of a reference
path. To take this into account, 25 % of the reference path
is used by the robot for immediate tracking purposes. Then
the robot acquires a new image, generates a new reference
path and again utilizes 25 % of it for further navigation. This
process is continued in an iterative fashion, so that the robot
can better cope with changing environments.

4.3 Image plane to real space conversion algorithm

After calculating the reference path in the image plane, i.e.
in terms of image pixel positions, it is required to project
these locations to the real world coordinates, where the robot
will actually navigate. The coordinate transformation is cal-
culated by measuring four distances as shown in Fig. 2. These
include the height of the camera from the floor, h. It is to be
noted that there is always a blind area immediately in front
of the robot. Hence, distance of the nearest point that can be
viewed by the camera is denoted as yb. The furthest point
visible to the camera at a distance is (yb + yl) and the fourth
distance is the furthest point to the left or right of the cam-
era lateral view, denoted as xl . With these measurements, the
three transformation angles are calculated as:

α = tan−1
[

h

yb

]
,

β = tan−1
[

h

yb+yl

]
, γ = tan−1

[
xl

yb

]
(20)

The point P(x, y) in the world coordinate, which is trans-
formed from the point P ′(u, v) in the image plane, is obtained
as:
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ASUS EEE PC
Laptop

USB link
Mobile robot base

Processor: PIC18F4550

Right wheel
RC servo

Left wheel
RC servo

Encoder

Encoder

6 IR
proximity
sensors

RC servo
scanner

IR range
sensor

Processor:
PIC12F683

(a) (b)

Fig. 1 a Block diagram of internal circuitry of the indigenously developed mobile robot and b the actual robot built [45]

y = h tan

[(π
2

− α
)

+
[

u

Sy

]
(α − β)

]
(21)

x = y tan

[
2v

Sx
× γ

]
(22)

where Sx and Sy are the number of image pixels in the vertical
axis and horizontal axis respectively [48]. The transforma-
tions used in (21) and (22) are based on the assumption that
each pixel subtends an equal angle of view.

4.4 Simulation case study

To evaluate the effectiveness of the proposed control strate-
gies, first the autonomous mobile robot navigation schemes
are developed in simulation. During simulation, fuzzy con-
trollers are trained according to different control schemes
as stated before. These trained controllers are implemented
on-line to obtain their implementation performances in test
conditions. In simulation study, the process model is sim-
ulated with a sampling time of 1 s., keeping the hardware
constraints for the robot in real implementations, in mind.

The steering equations of the mobile robot as in (1) can
be rewritten as:

ẋ = v cosϕ = ux

ẏ = v sin ϕ = uy

ϕ̇ = ω (23)

Now, (23) is a special case of (4), where f (·) = 0 and
b = 1. u = ux is the control signal from x-direction
tracking controller and u = uy is the control signal from
y-direction tracking controller and ϕ can be obtained from

ϕ(t) = tan−1
[

ẏ(t)
ẋ(t)

]
. It is assumed that the reference point

lies at the midpoint of the line joining the two drive wheels.
Let VL and VR denote the velocities of the left and the right

wheels respectively. The linear velocity V and the orientation
ϕ of the mobile robot can be described as:

V =
√(

u2
x + u2

y

)
: ϕ = tan−1

(
uy

ux

)
(24)

However, the theoretical expressions are suitably modi-
fied, to satisfy the hardware constraints of the robot system
and to maintain robustness of the mechanical components of
the robot developed for long-term operation. The VL and VR,
left and the right wheel velocities, respectively, are individu-
ally determined from the linear velocity V and the orientation
ϕ according to the Algorithm 3 [17].

The magnitudes of ux and uy are so generated from the
respective fuzzy controllers, that the linear velocity V and
the corresponding VL and VR will drive the robot to track the
generated path by the vision sensor.

The current position of the real robot can be determined
form the position encoders as follows:

δnew = δold + (	pL −	pR) ∗ 10◦

xnew = xold + (	pL +	pR) cos(δnew)

ynew = yold + (	pL +	pR) sin(δnew) (25)

where 	pL and 	pR are the increments of the left and
right encoders respectively and δ is the heading angle of the
robot. xnew and ynew are used as inputs to the state feedback
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Fig. 2 Relationship between
the image coordinates and the
mobile robot coordinates

Table 1 Comparison of results of mobile robot navigation using DyHS-based different schemes

Control Strategy No. of MFs in
x-dir controller

No. of MFs in
y-dir controller

Best IAE Ave. IAE Std. Dev.

Simulation case study

DyHSBA 5 5 1.0176 1.5029 0.3371

DyHS-HASBA-Con 5 5 0.9410 1.2843 0.3034

DyHS-HASBA-Pref 5 5 0.9031 1.1250 0.1500

DyHSBA-V 3 5 1.0179 1.4897 0.3170

DyHS-HASBA-Con-V 4 4 1.0016 1.3210 0.2328

DyHS-HASBA-Pref-V 4 6 1.0432 1.3423 0.2098

Real-life case study: Environment-I

DyHSBA 5 5 0.6356 1.0791 0.4267

DyHS-HASBA-Con 5 5 0.5761 1.0522 0.3984

DyHS-HASBA-Pref 5 5 0.5897 1.0549 0.3730

DyHSBA-V 3 5 0.6840 1.1313 0.4201

DyHS-HASBA-Con-V 4 4 0.6737 1.0552 0.3743

DyHS-HASBA-Pref-V 4 6 0.6174 1.0065 0.3464

Real-life case study: Environment-II

DyHSBA 5 5 0.5551 1.0794 0.4178

DyHS-HASBA-Con 5 5 0.5818 1.0889 0.4079

DyHS-HASBA-Pref 5 5 0.4646 0.9132 0.3615

DyHSBA-V 3 5 0.8219 1.1341 0.4020

DyHS-HASBA-Con-V 4 4 0.7415 1.0720 0.3786

DyHS-HASBA-Pref-V 4 6 0.7096 1.0474 0.4031

x-direction and y-direction controllers respectively, for both
simulation and real implementations.

The process model is simulated using a fixed step 4th order
Runge–Kutta method in this case study. All the parameters of
Z are optimized in HSBA algorithm by the DyHSBA algo-
rithm. In this simulation study, a harmony memory of ten
harmonies is chosen and, for each simulation, 200 improvi-
sations of the harmony memory are performed. Each con-

trol scheme, in both fixed and variable structure AFLC, is
simulated for 10 sample runs and the best IAE values, aver-
age IAE values and standard deviations among the results
are computed to compare the performances of the naviga-
tion schemes. In this case study too, the concurrent hybrid
model and the preferential hybrid model are implemented
utilizing the locally adaptive Lyapunov theory and DyHSBA
algorithm-based global optimization technique. The adapta-
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Table 2 Comparison of best results of mobile robot navigation during simulation case study and real-life case studies for two sample environments

Control Strategy No. of MFs in
x-dir controller

No. of MFs in
y-dir controller

Best IAE

Simulation Env.-I Env.-II

DyHSBA 5 5 1.0176 0.6356 0.5551

DyHS-HASBA-Con 5 5 0.9410 0.5761 0.5818

DyHS-HASBA-Pref 5 5 0.9031 0.5897 0.4646

PSOBA 5 5 1.0153 0.8488 0.8325

PSO-HASBA-Con 5 5 1.6289 0.8133 0.6983

PSO-HASBA-Pref 5 5 0.9880 0.6715 0.6168

GABA 5 5 2.5849 1.6276 1.3656

GA-HASBA-Con 5 5 1.9328 1.5091 1.2647

GA-HASBA-Pref 5 5 1.4791 1.4145 1.1066

DyHSBA-V 3 5 1.0179 0.6840 0.8219

DyHS-HASBA-Con-V 4 4 1.0016 0.6737 0.7415

DyHS-HASBA-Pref-V 4 6 1.0432 0.6174 0.7096

PSOBA-V 4 4 0.9860 0.8260 0.9854

PSO-HASBA-Con-V 3 5 1.6280 0.9003 0.8887

PSO-HASBA-Pref-V 3 6 1.6004 0.8434 0.8444

GABA-V 5 4 1.8746 0.8716 0.8998

GA-HASBA-Con-V 5 5 1.2005 0.9883 0.9723

GA-HASBA-Pref-V 4 4 1.7710 1.0791 0.9707

tion gains νx = 0.01 and νy = 0.1 are taken for x-direction
and y-direction controllers respectively. The results of DyHS
algorithm-based simulation studies are tabulated in Table 1
which show the performances of robot navigation, in simula-
tion, evaluated in implementation phase for different compet-
ing controllers, adapted during separate training procedures.

To show the wider usefulness of the proposed controller
design, we next compare their performances vis-à-vis similar
other controllers designed by competing popular stochastic
optimization techniques, namely, genetic algorithm (GA) and
particle swarm optimization (PSO). Table 2 first provides a
comparative study among the DyHS-, PSO- and GA-based
controllers designed for mobile robot navigation in terms of
their best IAE values, in the context of the simulation studies.
Among the competing controllers in fixed structure configu-
ration, the HASBA-Pref model shows the best performance.
In variable structure case, PSOBA model provides the best
solution and the HASBA-Con model provides the second
best solution, in terms of the IAE value computed between
the planned path and the actual path traversed by the mobile
robot, as shown in Table 2. In variable structure configura-
tion, the number of input MFs and hence, the number of rules
get reduced to some extent which will be very useful from
the point of view of real implementation.

The overall best IAE performance is obtained with a fixed
structure configuration. Hence it has been shown that the

DyHS-HASBA-Pref strategy-based controller designed with
fixed structure evolved as the best solution among the com-
peting strategies developed, including those using PSO and
GA, as reported in [17].

4.5 Experimental case study with real robot

The proposed HS algorithm-based design strategies are next
implemented for the navigation of the autonomous mobile
robot in two test environments with real robot and here also,
for each case study, each control scheme is tested for 10 sam-
ple runs. The mobile robot navigation in real environments is
achieved by using the adaptive fuzzy controllers trained dur-
ing the HS algorithm-based simulation experiments. Figure 3
shows the robot navigation performance for a sample run
avoiding obstacles, for test environment-I, utilizing fixed and
variable structure versions of the DyHSBA, HASBA-Con
model and HASBA-Pref model controllers. Figure 4 shows
the robot navigation performances for another sample run for
real test environment-II with fixed and variable structure ver-
sions of the DyHSBA, HASBA-Con model and HASBA-Pref
model controllers. Table 1 also presents quantitative compar-
isons of performances of competing controllers, in terms of
best IAE, average IAE and standard deviation in implemen-
tation phase, for both these real test environments chosen.
Among all the mobile robot navigation schemes in two envi-

123



www.manaraa.com

Harmony search-based hybrid stable adaptive fuzzy tracking controllers 415

Fig. 3 Trajectory of robot movement for real implementation in sam-
ple test environment-I, in a sample run, for: a fixed structure DyHSBA,
b fixed structure DyHS-HASBA-Con model, c fixed structure DyHS-

HASBA-Pref model, d variable structure DyHSBA, e variable structure
DyHS-HASBA-Con model, and f variable structure DyHS-HASBA-
Pref model, based adaptive fuzzy controller

ronments, considering both fixed structure and variable struc-
ture configurations, as shown in Table 1, the DyHS-HASBA-
Pref model evolved as the best solution in three cases. In one

case, DyHS-HASBA-Con model evolved as the best solu-
tion and DyHS-HASBA-Pref model evolved as the second
best solution. Hence it can be inferred that the proposed
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Fig. 4 Trajectory of robot movement for real implementation in sam-
ple test environment-II, for a sample run, for: a fixed structure DyHSBA,
b fixed structure DyHS-HASBA-Con model, c fixed structure DyHS-

HASBA-Pref model, d variable structure DyHSBA, e variable structure
DyHS-HASBA-Con model, and f variable structure DyHS-HASBA-
Pref model, based adaptive fuzzy controller

DyHS-HASBA-Pref model of controller design evolved as
the overall superior strategy, in terms of its best IAE values,
average IAE values as reported in Table 1, considering both

real implementations. From Table 1 it is also evident that the
results obtained in proposed DyHS-HASBA-Pref model of
controller design are most consistent as the standard devia-
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tions in IAE values obtained are minimum for this controller
option in all cases except one case. As in the case of the
simulation case studies, here also we demonstrate wider use-
fulness of the proposed DyHS-based control strategies by
comparing their performances for the real environments vis-
a-vis similar controllers designed using PSO- and GA-based
strategies. These results are similarly demonstrated in Table 2
in terms of best IAE values.

Therefore, in both the simulation case studies and in
real implementations in two test environments, the DyHS
algorithm-based control strategies have performed their
desired objectives of providing safe navigation path through
the obstacles. It can also be concluded that, among the com-
peting controller design strategies, DyHS-based hybrid pref-
erential model evolved as the superior design methodology,
on the whole, for the application of vision-based mobile robot
navigation technique using adaptive state feedback fuzzy
tracking controllers.

However, all these simulation and experimental results are
obtained on the basis of performances obtained for sample
environments and there is not sufficient statistical evidence
available to claim that the proposed HS-based variants can
significantly outperform the competing PSO and GA-based
variants, under all situations. Hence it will be logical to claim
that, overall, the proposed methods perform comparably with
the competing counterparts and, in some situations, these
proposed methods demonstrate superior performances.

5 Conclusion

The present paper proposed a novel idea for vision-based
mobile robot navigation utilizing the stable adaptive fuzzy
tracking controllers, designed by hybrid methodologies uti-
lizing Lyapunov theory and a dynamic version of HS
algorithm-based metaheuristic optimization. The stability of
the designed controllers is guaranteed by the Lyapunov the-
ory and the desired automation is achieved by the applica-
tion of a proposed dynamic HS algorithm-based optimization
strategy. A single camera-based vision sensing mechanism is
used for capturing image of the environment, subsequently
a path planning algorithm is implemented and the adap-
tive fuzzy tracking controllers are subsequently employed
to enhance the applicability of the proposed scheme for both
navigation and obstacle avoidance. Periodic image acqui-
sition and path planning technique facilitates the scheme to
tackle the dynamic environment of navigation. The proposed
strategies are successfully implemented both in simulation
and in two real environments. It has been successfully demon-
strated that the proposed dynamic harmony search algorithm-
based preferential hybrid design methodology evolved as a
superior approach among the competing controllers for the
sample experiments carried out. Overall it can be inferred

that these proposed methods perform comparably with the
competing counterparts and, in some situations, these meth-
ods demonstrate superior performances.

One of the important points to be noted is that in our
formulations in this work we have considered all candidate
solutions to be evolved using HS algorithms are fixed-length
vectors. For variable structure FLCs we have utilized struc-
tural flags whose each individual value determines whether
the corresponding MF will be considered or not in that iter-
ation. Hence, it is natural that, in many iterations and for
several candidate solutions, there will be parameters for
MFs which will have no effect on the evaluation of the
fitness/function. Hence, essentially some parameters will
undergo random variations without affecting the overall solu-
tion. It is probable that this increased diversity will equip
the HS algorithm with additional capability of exploring the
search space more efficiently and it will be more likely to
escape local optima. However, on the other hand, it may
decrease the rate of convergence or may even prevent conver-
gence in some cases. The authors wish to pursue this as their
future scope of research where they will attempt to solve sim-
ilar problems using variable-length vectors in the harmony
memory [44] and will attempt to perform systematic analysis
of solving identical problems using both fixed-length vectors
and variable-length vectors.

References

1. Rueb, K.D., Wong, A.K.C.: Structuring free space as a hypergraph
for roving robot path planning and navigation. IEEE Trans. Pattern
Anal. Mach. Intell. 9(2), 263–273 (1987)

2. Habib, M.K., Yuta, S.: Efficient online path planning algorithm
and navigation for a mobile robot. Int. J. Electron. 69(2), 187–210
(1990)

3. Dijkstra, E.W.: A note on two problems in connection with graphs.
Numer. Math. 1, 269–271 (1959)

4. Nilsson, N.J.: Principles of artificial intelligence. Tioga Publishing
Company, USA (1980)

5. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path
planning. IEEE Trans. Robot. Auto. 16(5), 615–620 (2000)

6. Valavanis, K.P., Hebert, T., Kolluru, R., et al.: Mobile robot naviga-
tion in 2-D dynamic environments using an electrostatic potential
field. IEEE Trans. Syst. Man Cybern. A Syst. Humans 30(2), 187–
196 (2000)

7. Thrun, S., Burgard, W., Fox, D.: A probabilistic approach to con-
current mapping and localization for mobile robots. Mach. Learn.
31(1–3), 29–53 (1998)

8. Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots
using potential field method. Auton. Robots 13(3), 207–222 (2002)

9. Ren, J., McIsaac, K.A., Patel, R.V.: Modified Newton’s method
applied to potential field based navigation for nonholonomic robots
in dynamic environments. Robotica 26, 285–294 (2008)

10. Ashokaraj, I.A.R., Silson, P.M.G., Tsourdos, A., White, B.A.:
Robust sensor-based navigation for mobile robots. IEEE Trans.
Instrum. Meas. 58(3), 551–556 (2009)

11. Nirmal Singh, N., Chatterjee, A., Chatterjee, A., Rakshit, A.: A
two-layered subgoal based mobile robot navigation algorithm with
vision system and IR sensors. Measurement 44, 620–641 (2011)

123



www.manaraa.com

418 K. Das Sharma et al.

12. Hillel, A.B., Lerner, R., Levi, D., Raz, G.: Recent progress in road
and lane detection: a survey. Mach. Vis. Appl. (2012). (published
online on 07 February 2012)

13. Gueaieb, W., Miah, Md.S.: An intelligent mobile robot naviga-
tion technique using RFID technology. IEEE Trans. Instrum. Meas.
57(9), 1908–1917 (2008)

14. DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: a
survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 237–267
(2002)

15. Shi, Z., Liu, Z., Wu, X., Xu, W.: Feature selection for reliable data
association in visual SLAM. Mach. Vis. Appl. (2012). (published
online on 07 July)

16. Shiao, Y., Yang, J., Su, D.: Path tracking laws and implementation
of a vision-based wheeled mobile robot. WSEAS Trans. Circuits
Syst. 12(7), 965–976 (2008)

17. Das Sharma, K., Chatterjee, A., Rakshit, A.: A PSO-lyapunov
hybrid stable adaptive fuzzy tracking control approach for vision
based robot navigation. IEEE Trans. Instrum. Meas. 61(7), 1908–
1914 (2012)

18. Chatterjee, A., Watanabe, K.: An adaptive fuzzy strategy for
motion control of robot manipulators. Soft Comput. 9(3), 185–193
(2005)

19. Chatterjee, A., Chatterjee, R., Matsuno, F., Endo, T.: Augmented
stable fuzzy control for flexible robotic arm using LMI approach
and neuro-fuzzy state space modeling. IEEE Trans. Ind. Electron.
55(3), 1256–1270 (2008)

20. Chatterjee, A., Chatterjee, R., Matsuno, F., Endo, T.: Neuro-fuzzy
state modeling of flexible robotic arm employing dynamically
varying cognitive and social component based PSO. Measurement
40(6), 628–643 (2007)

21. Chatterjee, A., Watanabe, K.: An optimized Takagi-Sugeno type
neuro-fuzzy system for modeling robot manipulators. Neural Com-
put. Appl. 15(1), 55–61 (2005)

22. Chatterjee, A., Pulasinghe, K., Watanabe, K., Izumi, K.: A particle
swarm optimized fuzzy-neural network for voice-controlled robot
systems. IEEE Trans. Ind. Electron. 52(6), 1478–1489 (2005)

23. Banerjee, S., Chakrabarty, A., Maity, S., Chatterjee, A.: Feedback
linearizing indirect adaptive fuzzy control with foraging based on-
line plant model estimation. Appl. Soft Comput. 11(4), 3441–3450
(2011)

24. Chakrabarty, A., Banerjee, S., Maity, S., Chatterjee, A.: Fuzzy
model predictive control of non-linear processes using convolution
models and foraging algorithms. Measurement (2013, accepted).
http://dx.doi.org/10.1016/j.measurement.2012.11.046

25. Bhattacharya, S., Chatterjee, A., Munshi, S.: An improved PID-
type fuzzy controller employing individual fuzzy P, fuzzy I and
fuzzy D controllers. Trans. Inst. Measure. Control 25(4), 352–372
(2003)

26. Bhattacharya, S., Chatterjee, A., Munshi, S.: A new self-tuned PID-
type fuzzy controller as a combination of two-term controllers. ISA
Trans. 43(3), 413–426 (2004)

27. Das Sharma, K., Chatterjee, A., Rakshit, A.: Design of a hybrid
stable adaptive fuzzy controller employing Lyapunov theory and
harmony search algorithm. IEEE Trans. Control Syst. Tech. 18(6),
1440–1447 (2010)

28. Das Sharma, K., Chatterjee, A., Rakshit, A.: Adaptive fuzzy con-
troller design employing harmony search algorithm for a class of
non-linear system, pp. 42–45. In: Proc. of National Conf. Instru-
mentation and Control, Kolkata, India (2011)

29. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic opti-
mization algorithm: harmony search. Simulation 76(2), 60–68
(2001)

30. Goldberg, D.E.: Genetic Algorithms in Search. In: Optimization
and Machine Learning. Kluwer, Boston (1989)

31. Konar, A.: Computational Intelligence: Principles. In: Techniques
and Applications. Springer, Berlin (2005)

32. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelli-
gence. Wiley, New York (2006)

33. Lee, K.S., Geem, Z.W.: A new structural optimization method
based on the harmony search algorithm. Comput. Struct. 82, 781–
798 (2004)

34. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved har-
mony search algorithm for solving optimization problems. Appl.
Math. Comput. 188(2), 1567–1679 (2007)

35. Tian, Y.-H., Bo, Y.-M., Gao, M.-F.: Harmony annealing algo-
rithm for multi-dimensional function optimization. Comput. Simul.
21(10), 79–82 (2004)

36. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for contin-
uous engineering optimization: harmony search theory and prac-
tice. Comp. Methods Appl. Mech. Engg. 194(36–38), 3902–3933
(2005)

37. Geem, Z.W.: Optimal cost design of water distribution networks
using harmony search. Eng. Optim. 38(3), 259–280 (2006)

38. Geem, Z.W.: Recent Advances in Harmony Search Algorithm.
Springer, Berlin (2010)

39. Astudillo, L., Castillo, O., Melin, P., Alanis, A., Soria, J., Aguilar,
L.T.: Intelligent control of an autonomous mobile robot using type-
2 fuzzy logic. Eng. Lett. 13(2), 93–97 (2006)

40. Wang, L.X.: Stable adaptive fuzzy control of nonlinear system.
IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

41. Fischle, K., Schroder, D.: An improved stable adaptive fuzzy con-
trol method. IEEE Trans. Fuzzy Syst. 7(1), 27–40 (1999)

42. Das Sharma, K., Chatterjee, A., Rakshit, A.: A hybrid approach for
design of stable adaptive fuzzy controllers employing Lyapunov
theory and particle swarm optimization. IEEE Trans. Fuzzy Syst.
17(2), 329–342 (2009)

43. Das Sharma, K., Chatterjee, A., Matsuno, F.: A Lyapunov theory
and stochastic optimization based stable adaptive fuzzy control
methodology, pp. 1839–1844. In: Proc. of SICE Intl. Conf. Instru-
mentation, Control and Information Technology, Japan (2008)

44. Alia, O.M., Mandava, R., Ramachandram, D., Aziz, M.E.:
Dynamic fuzzy clustering using Harmony Search with application
to image segmentation. In: Proc. IEEE International Symposium
on Signal Processing and Information Technology (ISSPIT), pp.
538–543 (2009) (14–17 Dec. 2009)

45. Singh, N.N.: Vision based autonomous navigation of mobile robots.
Jadavpur University, Ph.D. dissertation (2010)

46. Sasaki, T., Brscic, D., Hashimoto, H.: Human-observation-based
extraction of path patterns for mobile robot navigation. IEEE Trans.
Ind. Electron. 57(4), 1401–1410 (2010)

47. Subramanian, R., Spalding, E.P., Ferrier, N.J.: A high throughput
robot system for machine vision based plant phenotype studies.
Mach. Vis. Appl. (2012). (published online on 16 June)

48. Kim, P.G., Park, C.G., Jong, Y.H., Yun, J.H., Mo, E.J., Kim, C.S.,
Jie, M.S., Hwang, S.C., Lee, K.W.: Obstacle avoidance of a mobile
robot using vision system and ultrasonic sensor. In: Proc. 3rd Intl.
Conf. on Advanced Intelligent Computing Theories and Applica-
tions, ICIC’07, vol. 4681, pp. 545–553 (2007)

123

http://dx.doi.org/10.1016/j.measurement.2012.11.046


www.manaraa.com

Harmony search-based hybrid stable adaptive fuzzy tracking controllers 419

Author Biographies

Kaushik Das Sharma received
his B. Sc. (Physics Hons.),
B. Tech. (Electrical Engg.) and
M. Tech. (Electrical Engg.)
degrees from University of Cal-
cutta, Kolkata, India, in 1998,
2001 and 2004, respectively
and Ph.D. (Engg.) degree from
Jadavpur University, Kolkata,
India in 2012. Presently he is
an Assistant Professor of Depart-
ment of Applied Physics, Uni-
versity of Calcutta, India. His
research interests include fuzzy
control system design, stochastic

optimization applications, image processing etc. He has authored or
coauthored about 20 technical papers, including 9 international journal
papers.

Amitava Chatterjee received
the B.E., M.E., and Ph.D. degrees
in electrical engineering from
Jadavpur University, Kolkata,
India, in 1991, 1994, and 2002,
respectively. In 1997, he joined
the Department of Electrical
Engineering, Jadavpur Univer-
sity, where he is currently an
Associate Professor. In 2003, he
received the Japanese Govern-
ment (Monbukagakusho) Schol-
arship and visited Saga Univer-
sity, Saga, Japan. From Novem-
ber 2004 to November 2005, he

was with the University of Electro-Communications, Tokyo, Japan, on
a Japan Society for the Promotion of Science (JSPS) Post-Doctoral Fel-
lowship for Foreign Researchers. In March–May, 2004, and in May–
June, 2009, he visited University of Paris XII, Val de Marne, France,
as an invited Teacher. His research interests include fuzzy based non-
linear control, intelligent instrumentation, robotics, image processing
and pattern recognition, signal processing, and stochastic optimization
techniques. He presently serves as an Editor of IEEE Transactions on
Vehicular Technology and as an Associate Editor of IEEE Transac-
tions on Instrumentation and Measurement, IEEE Sensors Journal, and
Control Engineering Practice. He has authored or coauthored about 95
technical papers, including 65 international journal papers.

Anjan Rakshit received the ME
and PhD degrees in electrical
engineering from Jadavpur Uni-
versity, Kolkata, India, in 1978
and 1987, respectively. He is
a Retired Professor from the
Department of Electrical Engi-
neering, Jadavpur University.
His research interests include
digital signal processing, Inter-
net-based instrumentation, smart
instrumentation, intelligent con-
trol, and design of real-time sys-
tems. He has published about 60
technical papers in his areas of

research interest.

123



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Harmony search-based hybrid stable adaptive fuzzy tracking controllers for vision-based mobile robot navigation
	Abstract 
	1 Introduction
	2 Design of stable adaptive fuzzy tracking controller
	3 Design of harmony search algorithm-based AFLC
	3.1 Harmony search-based approach (HSBA) 
	3.2 Newly proposed completely dynamic harmony memory improvisation-based HSBA (DYHSBA) 
	3.3 Design of hybrid stable AFLC by HSBA and Lyapunov theory
	3.3.1 Hybrid concurrent model (HASBA-Con)
	3.3.2 Hybrid preferential model (HASBA-Pref)


	4 Vision-based mobile robot navigation using stable AFLC's
	4.1 Mobile robot hardware description
	4.2 Image processing strategy and generation  of the reference path
	4.3 Image plane to real space conversion algorithm
	4.4 Simulation case study
	4.5 Experimental case study with real robot

	5 Conclusion
	References


